

TECHNICAL BULLETIN

POZ[™] is a new insecticide for control of piercing and sucking insect pests in many perennial and annual agronomic crops including those insects resistant to standard chemistries.

Product Introduction

PQZ is effective on most developmental stages of target insects, including adults which is the stage where transmitting and spreading of plant viruses occur. The rapid cessation of feeding by treated insects, strong residual activity, and translaminar properties provided by PQZ allows immediate and long-lasting protection against insect pests and the viruses they transmit. The high level of efficacy, selectivity to beneficial insects, and favorable environmental profile make PQZ an excellent tool for Integrated Pest Management (IPM) programs, allowing growers to produce a high-quality crop with minimal environmental impact.

Mode of Action

Pyrifluquinazon, the active ingredient in PQZ, has been classified as a Chordotonal Organ TRPV Channel Modulator within Subgroup 9B - Pyridine azomethine derivatives by the Insecticide Resistance Action Committee (IRAC). Group 9 insecticides bind to and disrupt the gating of the Nan-lav TRPV (Transient Receptor Potential Vanilloid) channel complexes in insect chordotonal stretch receptor organs. Chordotonal stretch receptor organs are critical for the senses of hearing, gravity, balance, acceleration, proprioception, and kinesthesia. PQZ overstimulates the stretch receptors resulting in disruption of insect feeding, coordination, and flight impairment. Treated insects stop feeding rapidly and die from starvation and dehydration.

Formulation

PQZ is a 20% suspension concentrate (SC) formulation. It is easy to use and integrate into a spray program with mixing compatibility with most fungicides, insecticides, micronutrients, and adjuvants. The pH of the spray solution should be kept between neutral to acidic (pH 5-7) as PQZ is rapidly degraded under alkaline conditions. For maximum control and protection of the crop, use a penetrating and spreading surfactant to improve spray coverage and to enhance the translaminar properties of the product.

Effective Dose and Crop Safety

PQZ is highly effective on most target insect pests at the use rate of 3.2 fl oz/acre. Citrus thrips require 6.4 fl oz/acre. No crop phytotoxicity has been observed, even after multiple consecutive applications of product at maximum rate.

Target Crop Groups

PQZ will initially be registered for use on the following Crop Groups: Brassica Head and Stem Vegetables, Citrus Fruits, Cotton, Cucurbit Vegetables, Fruiting Vegetables, Grapes, Leaf Petiole Vegetables, Leafy Vegetables, Pome Fruits, Stone Fruits, Tree Nuts, and Tuberous and Corm Vegetables.

Pest Spectrum

PQZ provides excellent efficacy against aphids, citrus thrips, and whiteflies. While PQZ is effective against most insect developmental stages, it is more effective against the adult and first instar of the target pests. PQZ is not an ovicide.

Insect Order	Scientific Name	Common Name	Susceptible Stages	
Aphididae	Myzus persicae	Green peach aphid		
	Brevicoryne brassicae	Cabbage aphid		
	Aphis gossypii	Cotton aphid		
	Macrosiphum Potato aphid		Nymphs and Adults	
	Aulacorthum solani Foxglove aphid			
	Dysaphis plantaginea	Rosy apple aphid		
	Acyrthosiphon lactucae Acyrthosiphon aphid			
Thripidae	Scirtothrips citri	Citrus thrips	1 st -2nd Instars and Adults	
	Scirtothrips dorsalis	Chilli thrips		
Aleyrodidae	Bemisia tabaci	Sweetpotato whitefly	Crawlers and	
	Trialeurodes vaporariorum Greenhouse wh		Adults	
Pseudococcidae	Planococcus ficus	Vine mealybug	Nymphs and Adults	
Cicadellidae	Erythroneura spp.	Leafhopper	Nymphs and Adults	

Selectivity to Nontarget Arthropods

PQZ will have an excellent fit in IPM programs. PQZ has demonstrated minimal to no adverse effects when tested on a variety of beneficial insects.

Bene	ficial Species	Life Stage	Effect of PQZ	
Ladybug	Harmonia axyridis	Adult	Nontoxic	
	Orius isidiosus	Adult		
Predatory bugs	Orius sauteri	Adult	Nontoxic	
	Orius strigicollis	Nymph		
Parasitic wasps	Encarsia formosa	Pupa	Slightly Toxic	
	Aphytis melinus	Adult	Nontoxic	
Aphid midge	Aphidoletes aphidimyza	Larva	Nontoxic	
	Hypoasis miles	Adult	Nontoxic	
	Amblyseius cucumeris	Adult		
Predatory mites	Amblyseius californicus	Adult		
, , , , , , , , , , , , , , , , , , ,	Amblyseius swirskii	Adult		
	Phytoseiulus oersimilis	Adult		
	Euseius tularensis	Adult		
Wolf spider	Pardosa pseudoannulata	Adult	Nontoxic	
Silkworm Bombyx mori		Larva Nontoxic		

Translaminar Movement

POZ exhibits translaminar movement within the treated leaves but does not move systemically within the plant. Translaminar activity provides control of insects that feed on the underside of the leaf.

Translaminar Efficacy of POZ to Aphids in Cabbage, Cucumber, and Eggplant									
	Concentration	Total Number of Insects on Underside of Leaf							
	(F F IVI)	Cabb	bage	Cucu	mber	Eggp	plant		
		0 DAT*	7 DAT	0 DAT	7 DAT	0 DAT	7 DAT		
PQZ	50	28	0	24	0	32	0		
Untreated	_	21	136	14	98	19	68		

*Days After Treatment

Test method: Insecticide was applied on upper leaf surface while insects were inoculated on underside of leaf. Aphids: Cabbage (*Brevicoryne brassicae*), Cucumber (*Aphis gossypii*), Eggplant (*Myzus persicae*)

Uptake Routes

POZ effectively controls insects by direct contact with spray droplets, contact with residues on the surface of the treated plant, and/or by ingestion as the insect feeds on the treated foliage or fruit.

Speed of Activity

Speed of activity varies by insect; however, symptoms can be observed within minutes to a few hours after exposure. In insects which have high turgidity (stored fluids and fats), while feeding cessation will be rapid, these insects may be observed moving around disoriented on the plant, but mortality will occur due to feeding inhibition and starvation.

Speed of Feeding Inhibition and Mortality on Aphid with POZ

Green peach aphid were released on cabbage discs in agar plates; aphids were sprayed topically and feeding inhibition and mortality were assessed over time.

Virus Transmission Prevention

PQZ causes rapid feeding cessation resulting in the reduction or prevention of the transmission of primary and secondary viruses vectored by whitefly. These viruses include Cucurbit Yellow Stunting Disorder Virus (CYSDV) in cantaloupes and Tomato Yellow Leaf Curl Virus (TYLC) in tomatoes. In both laboratory and field studies, PQZ has shown superior reduction of adult whitefly populations in plots and a significant reduction in symptomatic plants.

Mean CYSDV Symptomatic Leaves / 40 ft Row

Dr. John Palumbo, UA, Yuma, AZ, 2017

3.2 fl oz/A (PQZ) and 2.2 fl oz/A (Admire Pro) Significant differences were observed between all treatments of percent time probing (df=2; F=129.89; P < 0.0001)

Dr. Rajagopalbabu Srinivasan, UGA, Tifton, GA

Residual Efficacy

POZ has demonstrated residual activity against target pests in both laboratory and field efficacy studies. Its high insecticidal potency, translaminar movement into the leaves, short rainfastness period, and chemical stability contribute to prolonged residual efficacy of the product. Residual activity may vary depending on field conditions, pest pressure, spray coverage, and other factors.

Consult state regulatory agency for information on product registration in a specific state. Refer to global MRL database for current established tolerances www.globalmrl.com/db#query.

©2018 Nichino America, Inc. All rights reserved. PQZ is a trademark and Nichino America logo is a registered trademark of Nichino America, Inc. Admire, Movento, and Sivanto are registered trademarks of Bayer. Agri-Mek, Fulfill, and Minecto are registered trademarks of a Syngenta Group Company. Assail is a registered trademark of Nippon Soda Co., Ltd. Beleaf and Harvanta are registered trademarks of Ishihara Sangyo Kaisha, Ltd. Cormoran is a registered trademark of an ADAMA Group Company. Delegate and Sequoia are registered trademarks of the Dow Chemical Company. Exirel is a registered trademark of an ADAMA Group Company. Delegate and Sequoia are registered trademarks of the Dow Chemical Company. Exirel is a registered trademark of E.I. duPont de Nemours and Company. Sefina and Versys are registered trademarks of BASF. Venom is a registered trademark of Valent U.S.A. LLC. Always read and follow all label directions. | 1-888-740-7700 | www.nichino.net